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Abstract 

The General Anadromous Fish Habitat Model (now the General Salmonid 
Habitat Model) was developed to assist in the plan formulation process for 
ecosystem restoration and mitigation projects. The model generates 
relative differences in habitat quality between proposed alternative future 
scenarios. In order to provide model development transparency, this 
report presents the initial quantification phase of the model development 
process. The draft model depicted in this report is scalable, meaning 
various parameters may be measured at different landscape scales (for 
example, reach vs. watershed). The model can be applied (model domain) 
in watersheds that currently or previously supported salmonid fish 
species. Application outside of the model domain would need further 
evaluation to ensure appropriate sensitivity to the new system of interest. 
Although the model is being developed to explicitly capture changes in fish 
habitat in response to restoration actions, this model would be appropriate 
for use in any planning project focused on the restoration of streams, 
rivers and, estuaries (for example, dam removals, in-stream habitat 
enhancement), because the parameters are measures of ecosystem level 
structure, function, and process. 
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1 Introduction and Background 

1.1 Background 

This report presents the results of steps taken to further the development 
of a general anadromous fish habitat model that will be used for the US 
Army Corps of Engineers (USACE) planning process, now known as the 
General Salmon Habitat Model, and includes the results of the 
quantification phase in the model development process. The first steps in 
conceptualization for this model are documented in Herman at al. (2018). 
This report formulates the model objectives, assumptions, and limitations. 
Model objectives and limitations for this report include 

• distinguishing between proposed restoration alternatives;
• including input from other agencies during and after the development

of the conceptual model or model framework;
• ensuring scalability considering different points along a regional

system or landscape (estuary to tributary) and considering life cycle
requirements (that is, spatially and temporally hierarchical along
geography and habitat structure and life-cycle lines);

• relevant to habitats of interest and at the ecosystem level, not just the
species; and

• communicating benefits derived from a recommended restoration
plan.

This model does not project changes in population numbers of any life 
stage or species. The model captures changes in the ecosystem as result of 
USACE activities. Also, it does not project absolute system changes but 
rather relative differences between proposed restoration alternative 
actions. Finally, although the parameters were chosen and quantified 
primarily using the life history requisites of salmonid species, at this step 
in the process, the model represents suitability of the system for all 
anadromous and other fish species of concern expected to benefit from 
habitat restoration. However, later efforts scaled back this assumption, 
and the current Salmon Habitat Model primarily serves projects that 
involves Pacific Northwest salmonid species. 
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1.2 Purpose 

This model provides planners with a general model applicable to a variety 
of project types, at multiple spatial scales, that differentiates between 
various proposed restoration actions. Multiple salmonid models were 
developed for prior projects, but since the models were project specific, 
they were not appropriate for other planning projects. These individual 
modeling efforts resulted in a high level of cost associated with each 
project, as each consecutive project developed new models. A general, all-
purpose restoration planning model will therefore bring down costs and 
speed up the planning process. 

1.3 Objectives 

The anadromous fish habitat model (Salmon Habitat Model) was 
developed to ensure applicability at multiple spatial scales, sensitivity to 
various proposed restoration actions, and practicability for a variety of 
project types. Model domain is watersheds that support salmonid fish 
species along the west coast of the continental United States of America. 

1.4 Approach 

Figure 1 presents an early version of the conceptual anadromous fish 
habitat model (Herman et al. 2018). In later efforts, the parameters listed 
in the early conceptual model were qualitatively evaluated to determine if 
they met the model objectives. The reason to maintain or remove each 
parameter is documented in Herman et al. (2018). As a result of the 
parameter refinement, a revised conceptual model was then developed 
(figure 2). 
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Figure 1. Early draft of conceptual habitat model. 

A mediated modeling workshop further helped develop the model, 
resulting in consensus on a final conceptual model and draft quantification 
of parameters. Challenges overcome during the mediated model 
development workshop included integrating new members of the model 
development team, cultivating a collective understanding of the 
applications and limitations of the model (for example, general enough to 
be applied in a variety of project types and sensitive enough to generate 
relative differences between proposed future alternative scenarios), and 
finding a group consensus with the final conceptual model and model 
framework. 
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Figure 1. Second draft conceptual habitat model. 

1.5 Scope 

The mediated model development workshop was held in July of 2016 in 
Seattle, Washington, which included USACE planers, modelers, biologists, 
and a non-USACE academic. Mediated modeling is a process wherein 
facilitators and stakeholders find consensus at each model development 
phase, which results in a collective understanding of the model’s 
assumptions, limitations, and applications (van den Belt et al. 2006). The 
first step in the workshop was to revisit the refined conceptual model 
(figure 2) and reach consensus on which parameters to carry forward into 
the quantification phase. The categories under question were structure 
and connectivity. The remainder of the categories did not require further 
discussion or revision. 

Quantification involves defining the mathematical relationship each 
parameter has to the system of interest. Typically, this is conducted by 
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agreeing on how the parameter should be measured (for example, mg1/L, 
average depth, ft/s2, etc.) and mathematically describing the response of 
this parameter to a change in the system (for example, linear, logistic, 
truncated). For the purposes of this effort, the expected change in the 
system is a potential future action undertaken by USACE (for example, 
restoration of woody debris). The group then quantified the maintained 
parameters through a consensus process, where the workshop participants 
were encouraged to talk about their experiences (for example, data 
collection and analysis) and observations of these parameters (Schmolke 
et al. 2010). After the discussion, the group then reached a consensus 
about how to measure the parameters and how to mathematically describe 
each parameter’s relationship to a change in the system. The model 
development team used a combination of published literature and best 
professional judgment to create the response curves. 

1. For a full list of the spelled-out forms of the units of measure used in this document, please refer
to US Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing 
Office, 2016), 248–52, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-
STYLEMANUAL-2016.pdf. 

2. For a full list of the unit conversions used in this document, please refer to US Government
Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing Office, 2016), 
345–7, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-
2016.pdf. 
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2 Results 

2.1 Final conceptual model 

For a more detailed and in-depth discussion of the importance of each of 
the parameters for anadromous fish habitat, see Herman et al. (2017). The 
final conceptual model is presented in figure 3. The final conceptual model 
includes six categories and nine parameters. 

Figure 2. Final conceptual habitat model. 

2.2 Parameters reassessed and removed 

The following are descriptions of the group consensus reached for each 
parameter. The consensus resulted in either removing the parameter from 
further consideration or completing the draft (first effort) quantification 
phase for the remaining parameters. 
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2.2.1  Structure 

2.2.1.1  Pool-to-riffle ratio 

Empirical evidence suggests that there is an optimal pool-to-riffle ratio for 
salmonid species. However, some stream and river reaches might have 
never had a naturally occurring mix of pools and riffles, and yet model 
outputs may indicate that these reaches would provide better salmonid 
habitat with a mix of pools and riffles. But some reaches would be 
unsuitable for installing pool-riffle complexes. A model objective was to 
consider more carefully the restoration of ecological processes vs. static 
features. The group’s concern was that this parameter may be most 
sensitive to installation of static features and less to restoration of 
ecological processes. The group decided that this parameter does not 
support model objectives. In addition, other parameters, such as pools, 
riffles, and runs, would account for this type of habitat feature; thus, the 
group removed this parameter from further consideration. 

2.2.1.2  Secondary side channel 

The presence of naturally occurring or naturalized side channels are a 
unique feature of the landscape and are a critical need for certain life 
stages of salmonid species. Removing barriers can create (for example, 
dredged and armored) or reestablish secondary side channels. These 
channels are best described as part of a fully functioning floodplain along 
the tributaries, mainstem, and the tidal zone in estuaries. The group 
decided that this parameter would be better accounted for under another 
parameter (floodplain features) removed it from further consideration. 

2.2.1.3  Wall-based ponds 

Similar to secondary side channels, wall-based ponds are a unique feature 
and are important for certain life stages (particularly juvenile) of 
salmonids. Wall-based ponds are also associated with a floodplain. Wall-
based ponds’ contribution to salmonid habitat would be best accounted for 
under the floodplain features parameter. Therefore, the group removed 
this parameter from further consideration. 

2.2.1.4  Wetlands (formerly known as lacustrine Wetlands) 

Previously, this parameter was named lacustrine wetlands, but because 
wetlands needed for salmonid habitat are found in all landscape units, 
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such as mainstem and estuary, the group agreed to drop lacustrine from 
the title of the parameter. Additionally, because wetlands suitable for 
salmonid habitat are hydrologically connected to either the floodplain or 
the tidal surge plain, the group agreed that the benefits from restoring 
wetlands would be better captured under the floodplain features 
parameter and removed it from further consideration. 

2.2.1.5  Complexity 

Complexity is a measure of the number of different in-stream and 
river/stream bank features present within a reach. The group decided that 
the same habitat features are accounted for in other parameters, such as 
channel and pools, riffles, runs; thus, the group removed it from further 
consideration. 

2.2.1.6  Sinuosity 

Sinuosity is the amount of nonlinear contouring a shoreline exhibits 
within a reach of concern. The group decided sinuosity is accounted for 
under the channel parameter and removed it from further consideration. 

2.2.1.7  Gradient 

Gradient is the change in elevation over the length of a reach. Gradient is a 
useful indicator of a number of other habitat features, such as sinuosity 
and complexity. Gradient is also useful in selecting sites for appropriate 
restoration measures. However, because gradient is closely tied to other 
measures of salmonid habitat, such as channel, the group decided to 
remove it from further consideration. 

2.2.1.8  Channel shape 

A wide (subjective to reach type) distance between banks, coupled with 
medium to shallow depth of a channel, supports critical ecosystem 
functions (for example, hydrology and hydraulics) and features (for 
example, pools and riffles) that form suitable habitat for salmonid species. 
Similar to the channel parameter, as the channel’s shape is altered by 
human activities (for example, straightened and deepened), its ability to 
form suitable salmonid habitat degrades. Because channel shape was very 
similar to the channel parameter, the group decided to remove it from 
further consideration. 
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2.3 Parameters retained and initially quantified 

The results of the initial parameter quantification phase are presented as 
figures that show the change of parameters in relation to an index value 
that ranges from 0–1. This relationship reflects how change in the 
parameter impacts the ability of the system to support healthy ecosystem 
structure and function, otherwise known as habitat quality. An index value 
of zero (0) indicates very poor quality habitat; an index value of 1 indicates 
optimum habitat quality. Each parameter will be further refined based on 
an in-depth review of published literature and consultation with subject 
matter experts. 

Note that each of the parameters are notated by T—tributary/mainstem, 
W—watershed, E—estuary. These indicate the spatial scale that is most 
appropriate for the application of that specific parameter. Many 
parameters are appropriate at multiple scales. Also, the relationships 
depicted as the change in habitat suitability with change in parameter are 
in a draft form and will be further refined in future model development 
phases. 

2.3.1  Structure 

2.3.1.1  Channel (T, W, E) (formerly known as Channelization) 

The channel parameter quantifies the diversity of in-stream habitat types 
that result from the shape and geomorphic contours of a channel (figure 
4). When a channel is straightened, the diversity of habitats is lost. The 
group decided that this parameter represents diversity of in-stream 
habitats, including secondary and main stem channels, alcoves, sloughs, 
backwaters, and sinuosity of shoreline. The parameter is measured as an 
index of diversity (for example, habitat diversity). As the richness (number 
of total features) and evenness (abundance of features) of channel features 
increases, so does the quality of anadromous fish habitat. Evenness is 
calculated as the abundance of one feature in relation to other habitat 
features in the area of concern. As the abundance of each feature becomes 
similar to the abundance of the other features, the diversity will increase. 

This parameter was developed to be flexible and measurable at any spatial 
scale. The recommended diversity indices, Shannon’s (H´) and Simpson’s 
(D2) (Begon, Harper, and Townsend 1996; Magurran 1988; Rosenzweig 
1995), have been well researched and their properties well known. The 



ERDC/EL TR-20-5 10 

outputs from the Shannon Index range between 1.5 and 3.5, rarely above 4 
(Magurran 1988). Simpson’s range from 0 to 1. The use of either of these 
indices would require the x axis to be rescaled, but the response curve 
would remain the same. The curve would maintain an increase from 0 to 
1.00 along the y axis, then plateau, with the reason being that any increase 
beyond 60%–75% maximum habitat diversity (~2.5) may not be as 
significant as the increase between 0 and 60%–75%. 

References: Langler and Smith (2001), Rosenfeld, Porter, and Parkinson 
(2000), Anlauf-Dunn et al. (2014), Smorkorowski and Pratt (2007), Geist 
and Daubble (1998), Wippelhauser and Squiers (2015), and McMahon and 
Hartman (1989). 

Figure 3. Draft channel. 

2.3.1.2  Pools, Riffles, Runs (T) 

Similar to the parameter pools-to-riffles ratio, this parameter quantifies 
the relationship of specific in-stream features (for example, pools) to the 
quality of anadromous fish habitat (figure 5). The group decided that the 
most appropriate way to measure this parameter is to measure the amount 
of area each feature covers within a reach and calculate the ratio of area of 
features. As the ratio becomes more even, the quality of habitat increases, 
with a plateau in suitability at 0.5. This parameter was developed for the 
reach scale (T). An important note about this parameter is that not all 
features are equally important. Pools and riffles are prioritized above runs 
for restoration planning. This is because of the relative scarcity of 
appropriate pool-riffles complexes relative to runs currently present 
within many of the watersheds supporting anadromous fish species of 
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concern. Thus, the application of this parameter should weight the pools 
and riffles as more important than runs. This relationship will be further 
refined in future model development phases. 

References: Rosenfeld (2014), Muhlfeld, Bennett and Marotz (2001), Bell, 
Duffy, and Roelofs (2001), and Roper et al. (1994). 

Figure 4. Draft pools, riffles, runs. 

2.3.1.2.1  Floodplain features (T, W, E) (formerly known as floodplain) 
Floodplains provide important habitat features for anadromous fish, 
especially salmonid species. Floodplain includes the following features: 
wall-based ponds, oxbows, wetlands, and others. Once floodplain features 
are destroyed through development or agriculture, they are lost as habitat. 
As a floodplain is restored, the number of different habitat features 
available increases, and the quality of habitat increases (figure 6). The 
group decided that an appropriate measure of this parameter is an index 
of diversity, such as Shannon’s or Simpson’s (see channel parameter and 
Jost [2006]). There is a positive relationship between the diversity of 
floodplain features and suitability of habitat. The group also decided that 
the type, number, and evenness of floodplain features differ between 
landscape units. Mainstem floodplain features include small intermittent 
tributaries, ponds, lakes, various wetlands, natural levees, and natural 
upland edges. Tributaries contain oxbows, wall-based ponds, various 
wetlands, and natural upland ridges. Estuaries contain different various 
wetlands, tidal channels, panes, natural upland ridges, and tributaries. 
The group also decided that, depending on the project, one or more of the 
landscape units may be modeled (for example, mainstem), while the 
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mathematical relationship of the parameter would remain the same for 
each landscape unit. 

References: Branton and Richardson (2014), Beechie, et al. (2012), Roni et 
al. (2006), and Smokorowski and Pratt (2007). 

Figure 5. Draft floodplain features. 

2.3.2  Connectivity 

2.3.2.1  Longitudinal connectivity (T, W, E) 

Longitudinal connectivity is the ability of an organism to access areas 
within a stream or river network (for example, watershed). Barriers to 
movement create disconnected habitat. Barriers to movement may 
manifest during different times (for example summer low flow) of the 
year. Longitudinal connectivity is a critical ecosystem component for 
anadromous species that need to access different habitat types within an 
aquatic network during different life stages and during different times of 
the year. As the percent of time increases for the ability of a species to 
access formerly disconnected habitat, the suitability of the aquatic network 
or system as a whole increases. The group added a word of caution when 
calculating baseline and future with project conditions for this parameter 
because overestimating percent-time accessible is possible. For example, 
the removal of one barrier may not provide access to all potential habitats 
above barrier during different times of the year or for different life stages 
of a species. 
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References: Beechie, Beamer, and Wasserman (1994), Cote et al. (2009), 
and Buddendorf et al. (2017). 

Figure 6. Draft longitudinal connectivity. 

2.3.2.2  Lateral connectivity (T) 

Lateral connectivity is the ability of organisms to access habitat adjacent to 
stream and river reaches within floodplain and surge plain areas. Lateral 
connectivity is driven by river fluctuations that allow access to floodplain 
habitat during portions of the year. Lateral connectivity is impacted when 
barriers (for example, levees) no longer allow species to access floodplain 
habitat. Another aspect of hydrological connectivity the group identified as 
an important component in the system of interest was vertical 
connectivity. Vertical connectivity is the interface of groundwater and 
surface water in the zones found along the alluvial (hyporeic zone) and 
hillslope aquifers (phreatic zone). Generally, as lateral connectivity 
increases, so does vertical connectivity. The group decided that even 
though a measure of changes in lateral connectivity would account for 
most changes in vertical connectivity, vertical connectivity should be 
assessed during site selection in the planning phase. Measurement of 
lateral connectivity is the combination of time accessible (number of days) 
and at appropriate depth of flood water (figure 8). As the time a floodplain 
feature is accessible and the depth of water over the feature increases, so 
does the suitability of habitat. However, after a 15-day inundation, the 
suitability of habitat declines, which is outside the normal range of time of 
inundation for salmonid species specifically. Greater than 50 days of 
inundation doesn’t destroy the habitat, but it is very poor quality. 



ERDC/EL TR-20-5 14 

References: Merenlender and Matella (2013), Pringle (2003), Sommer et 
al. (2001), and Sellheim et al. (2015) 

Figure 7. Draft lateral connectivity. 

2.3.1  Edge-type landscape cover (T, W, E) 

The type and amount of vegetation that occur along the network of 
streams and rivers within a watershed is an important indicator of suitable 
habitat. As riparian vegetation is converted or lost due to human activities, 
there is an overall decrease in the quality of habitat (figure 9 and 10). 
Additionally, in some areas non-native plant species have replaced native 
plant species. In some cases the non-native plant species provide similar 
functions as native plant species. However, non-native species largely 
negatively impact the ecosystem function and structure that support 
suitable habitat. In order to capture the changes from loss of overall edge 
cover and conversion of native species to non-native species, the group 
developed two measures of edge cover and decided that the percent 
vegetated cover within the riparian buffer (for example, can be both native 
and non-native or a mix) is positively correlated with suitable salmonid 
habitat. Edge cover 1 (figure 9) is a response curve exhibiting a mostly 
linear relationship with percent cover in the riparian buffer area and a 
plateau of suitability around 75% cover. Additionally, the percent of the 
riparian buffer area covered by native species was positively correlated 
with suitable habitat (figure 10). Edge cover 2 (figure 10) exhibits the same 
response curve as edge cover 1. The group also decided that the buffer area 
will be measured from toe of bank to the high water level, which allows the 
measurement of the high water level to accommodate specifics of a project 
area. 
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References (edge cover 1 and 2): Burnett et al. (2007), Pess et al. (2012), 
Klimas and Yuill (2013), del Tanago and de Jalon (2006), Battin et al. 
(2007), Mellina and Hinch (2009), Wootton (2012). 

Figure 8. Draft edge cover (1). 

Figure 9. Draft edge cover (2). 

2.3.1  Refuge cover 

2.3.1.1  Woody Debris (T, E) 

Woody debris that falls or is washed into an aquatic system forms critical 
structures for anadromous fish species at different life stages and during 
different seasons. As the number of woody debris pieces or multiple piece 
jams are found within a reach, the quality of habitat for fish species 
increases (figure 11–13). The group decided this parameter should be 
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measured by the number of pieces found within the bankful width of a 
reach at the scale of concern (tributary, mainstem, and estuary). There are 
different optimum number of pieces found within different landscape 
units (for example, tributary vs. mainstem), and they may differ between 
watersheds, according to research in Fox and Bolton (2007). After the 
optimal number of pieces are present within a reach at the scale of 
concern, any increase in the number of pieces does not increase suitability 
of habitat. The tributaries are measured as the average number of pieces of 
woody debris per square meter within the bankful width of the reach 
(figure 11). Mainstem is measured as the number of pieces within the 
bankful width along a kilometer of a reach (figure 12). The estuary is 
measured as the number of pieces found within a drainage area (figure 13). 
An important note about this parameter is that the reasoning behind the 
structure of the curve is not necessarily total number of static pieces of 
woody debris; rather, the curve reflects the restoration of a process that 
will systematically replenish woody debris over time (for example, 
upstream woody resources). The direct placement or installation of woody 
debris as a restoration technique will not necessarily replace this natural 
mechanism. 

References (woody debris 1–3): House and Boehne (1985), Smokorowski 
and Pratt (2007), Louhi et al. (2016), Beechie et al. (2012), Roni et al. 
(2010), Fox and Bolton (2007), and Mellina and Hinch (2009). 

Figure 10. Draft woody debris tributary (1). 
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Figure 11. Draft woody debris (2). 

Figure 12. Draft woody debris estuary (3). 

2.3.1  Substrate 

2.3.1.1  Sediment (formerly size) (T) 

The parameter sediment (formerly size) refers to the sedimentation 
processes that form critical substrate for a variety of different life stages of 
anadromous fish species. During discussions, the group realized that 
trying to measure average size of particles or dominant particle size of any 
substrate type would not support the model objectives, such that the 
model objectives emphasize the benefits of restoring processes vs. static 
features. In order to support model objectives, the group decided to 
measure a proxy of sediment transport processes that indicates suitable 
habitat. The ratio of accretion to erosion is indicative of a process that 
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forms and maintains critical substrate for different life stages of 
anadromous fish species. As the rate of accretion exceeds erosion, or 
erosion exceeds accretion, habitat suitability decreases (figure 14). The 
goal of restoration is to assist these dynamic forces into a more normalized 
pattern where the rates of accretion and erosion are similar. The 
measurement of this parameter would be an average visual assessment of 
the area of concern to decide whether a project along a tributary or main 
stem is more or less accreting or eroding. The reason for visual 
assessment, instead of a more robust quantitative measurement, is that 
the cost of quantitative measurement does not provide any further 
information that would be needed to determine habitat suitability. 

References: Reiser and White (1988), Collins et al. (2014), and the 
National Oceanic and Atmospheric Administration (NOAA) Fisheries 
(2004). 

Figure 13. Draft sediment. 

2.3.1  Water 

2.3.1.1  Temperature (T, W, E) 

High water temperatures (>25ᵒC) within the summer months are known 
to have adverse impacts on anadromous fish species, particularly 
salmonids. Water temperature is measured as a function of habitat 
suitability (figure 15–19). The group expressed concern that just one 
measure of temperature, such as mean daily summer temperature, would 
not capture all the possible scenarios of restoring water temperature to a 
more suitable range. Different life stages of fish species have different 
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tolerances related to time of exposure, seasonality, and landscape unit 
type. In order to accommodate potential future restoration scenarios, the 
group developed three different mathematical relationships for 
representing different aspects of how temperature is a function of habitat. 
In addition, each of the three curves was calibrated for west coast (WC) 
and east coast (EC) anadromous fish species. 

The first (1) relationship (general temperature) describes the general range 
of water temperature and its associated habitat suitability. As temperature 
increases for the WC, from the expected low of 15ᵒC to greater than 25ᵒC, 
the suitability of habitat decreases. The EC is calibrated for colder and 
hotter temperatures, ranging from 8°C to 32°C. The second (2) 
relationship (bioenergetics) describes the predicted performance of 
individuals in terms of successful migration, breeding, and rearing. The 
bioenergetics curve is shared by both EC and WC anadromous species. 
There is an optimum range of bioenergetics that sits around 15ᵒC, and 
anything lower or higher is not as suitable. The third (3) relationship 
describes predictive survival ranges. WC anadromous fish are expected to 
survive temperatures between 0ᵒC to 25ᵒC; anything greater than 25ᵒ is 
considered lethal to most life stages and in most landscape units. EC 
anadromous fish share a similar relationship but can withstand higher 
summer temperatures, 0°C to 34°C. The way in which temperature is 
measured for each relationship (for example, mean annual temperature, 
mean daily temperature) is intentionally left open for future project needs. 
For example, if a project planned to restore optimum performance 
temperatures within an estuary, the measurement and range of optimum 
temperatures would be different than for a tributary. Note that while the x 
axis is a placeholder for some measurement of temperature to be 
determined according to project objectives, the response curve remains 
the same. 

References (temperature 1–3 WC): Branton and Richardson (2014), Geist 
et al. (2006), Groves and Chandler (1999), Mellina and Hinch (2009), 
Honea et al. (2009), and Wootton (2012). 

References (temperature 1–3 EC): Bigelow et al. (1963), Peterson, 
Spinney, and Sreedharan (1977), Jordan and Beland (1981), Kynard et al. 
(2009), and Dadswell et al. (1984). 
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Figure 14. Draft general temperature (1) WC. 

Figure 15. Draft general temperatures (1) EC. 

Figure 16. Draft bioenergetics temperature (2). 
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Figure 17. Draft survival temperatures (3) WC. 

Figure 18. Draft survival temperature (3) EC. 

2.4 Model structure 

Figure 20 presents how the parameters are grouped by landscape unit, and 
the model has an output for each landscape unit. If a study has a project 
area encompassing a reach along a main stem and within an estuary, a 
separate model output exists for each landscape unit. 
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Figure 19. Draft model structure. 
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3 Discussion 

The General Anadromous Fish Habitat Model (now the General Salmon 
Habitat Model) was developed to assist in the plan formulation process for 
ecosystem restoration and mitigation projects. The model will generate 
relative differences in habitat quality between proposed alternative future 
scenarios. The current draft model is scalable, meaning various 
parameters are measurable at different landscape scales (for example, 
reach vs. watershed). The model can be applied (model domain) in 
watersheds that currently or previously supported salmonid fish species 
along the West Coast. Application outside of the model domain requires 
further evaluation to ensure appropriate sensitivity to the new system of 
interest. Although the model is being developed to explicitly capture 
changes in fish habitat in response to restoration actions, this model is 
applicable to any planning project focused on the restoration of streams, 
rivers, and estuaries (for example, dam removals, in-stream habitat 
enhancement), because the parameters measure ecosystem level structure, 
function, and process. 
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4 Conclusion 

Overall, the project team has successfully met the goals and objectives of 
the original model development process through mediated group 
modeling. This model development effort resulted in a well-defined 
ecological model with a wide-range of possible uses for USACE. Future 
steps in model development will include refining the current suitability 
curves, evaluation (for example, ensuring model outputs reasonably reflect 
observed patterns) and sensitivity analyses (for example, each parameter’s 
level of influence). The results of model evaluation and sensitivity analyses 
will be compiled with the reports of model development. The compiled 
model documentation will then be independently reviewed and certified 
for use in USACE planning processes. 
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