COASTAL HAZARDS SYSTEM – AN EXPANDABLE AND ADAPTABLE FRAMEWORK FOR COASTAL RISK AND CLIMATE RESILIENCE APPLICATIONS

Norberto C. Nadal-Caraballo, PhD Senior Research Engineer / Coastal Hazards Group (CHG) Lead

Madison C. Yawn Research Physical Scientist / CHG Co-Lead

U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory

NEED FOR COASTAL HAZARDS INFORMATION

Commitment to Coastal Resilience

- Federal agencies have missions supporting <u>coastal resiliency</u> (i.e., mitigating, responding to, and protecting against coastal hazards)
- Supporting coastal resiliency includes activities such as:
 - Planning
 - Engineering design (gray and green)
 - Emergency management
 - Risk assessment
 - Flood mapping
- These activities need accurate information describing the <u>magnitude</u> and <u>frequency</u> of coastal hazards
 - \circ Ex: storm surge, waves, rainfall
 - Future climate scenarios
- Information is provided through the Coastal Hazards System (CHS)

Hazard = Magnitude × Frequency

Coastal Hazards System (CHS)

What is the CHS?

A national-scale, multi-agency initiative for accurate, efficient, and consistent quantification of coastal storm hazards along U.S. coastlines and other strategic locations critical to our national security.

Goal:

Provide high-fidelity, high-resolution state-ofthe-art hydrodynamic and probabilistic modeling and companion tools in a multivariate statistical context for coastal planning, engineering, and operations and maintenance.

Impact to the Nation:

Methods, data, and tools within the CHS serve as the basis for coastal engineering by providing high-fidelity, probabilistic coastal hazards on a national scale.

https://chs.erdc.dren.mil

HOW DO WE QUANTIFY COASTAL HAZARDS?

Approach

- Conduct comprehensive studies to quantify coastal hazards on a regional scale
 - USACE and FEMA
- Coastal Hazards System (CHS)
 - Publicly available results from coastal studies

Methodology

- Probabilistic Coastal Hazard Analysis (PCHA) is a statistical and machine learning framework supporting CHS
- Goal: fully cover parameter and probability spaces

Benefit

- Hazard curves describing the full probability space
 of storm responses, with uncertainty estimates
- Direct input of results to support risk assessments, engineering, reliability, downstream modeling, etc.

SOUTH ATLANTIC COASTAL STUDY (SACS)

- Water Resources Development Act of 2016 (WRDA 2016) – Section 1204: South Atlantic Coastal Study (SACS)
- Authorizes Secretary of the Army to conduct a comprehensive coastal study within the geographic boundaries of the South Atlantic Division (SAD) to
 - 1. identify risks and vulnerabilities due to increased hurricane and storm damage as a result of sea level rise;
 - 2. recommend measures to address the vulnerabilities;
 - 3. develop a long-term strategy
 - $\circ\,$ address increased storm damages from rising sea levels
 - identify opportunities to enhance resiliency and increase sustainability in high-risk areas
- Coastal Area of Responsibility (AOR): from the coast to the extent of the tidal influence.

The geographic extent included the three distinct coastal regions within SAD's AOR:

- Atlantic Coast North Carolina to SE Florida
- Gulf Coast SW Florida to Mississippi
- Caribbean Puerto Rico and U.S. Virgin Islands

South Atlantic Coastal Study (SACS) Map (Study extends from the coast inland to the extent of tidal influence)

ERD@

COASTAL HAZARD STUDY WORKFLOW

Structure Design	StormSim: CHS D	ata Viewer St	ormSim: PROS	Tab				
Structure Design & Forcing				Structure Preview				
General Option Analysis Type: Forcing Desig Storm Duration Wave Period [s Wave Height (<i>I</i> Forcing Bias C Forcing Datum Structure Desi	ns Deterministic n h [hrs]: 4 d_{m_0} [m]: 2 forrection: for $NAVD88 \neq$ gn	Water Level Type: Peal Wave Direc (No Correction) Lat: 26.22	Need help? @? [m]: 4 k (Tp) ▼ tion[°]: 2 v Lon:	8 6 → 4 2 0	Wave Heig Water Leve Berm	ht el		
Structure Type	Smooth Slopin	g Structure 💌	NAVD88 V	-2 0	10	20	30	40
Crest Elevation	n [m]: 8	Seaward Slo	ope: 1.5			Х		
Crest Width [m]: 8	Landward S	lope: 1.5	Uncertain	ities & En	npirical Co	efficients I	Profiles
Berm Width [m]: 6	Toe Elevatio	on [m]: -1	Structure & Fo	orcing Uncertain	nties Empiri	cal Coefficients	Doc
Dame Elsevetion	n [m]: 1.5	Permeability	(P)*: 0.4					
Berm Elevation	(S): 6	Water S.W.I	N/m ³]: 6	Parameter		Units	Value	0.2404
Damage Limit				Overteening Ur	certainty			0.3181
Damage Limit Stone S.W. [N/	m ³]: 6	Include Berr	n: 🗹	Uvenoonio ur				
Damage Limit Stone S.W. (N/ Seaward Weigl	m ³]: 6	Set-up Weig	n: 🗹	Runup Uncerta	inty			0.1257

ERDC

REGIONAL COASTAL HAZARDS

Hazard Magnitude & Frequency ⇒ Dominant Coastal Storm Forcing

Tropical cyclone (TC) and extratropical cyclone (XC) forcing by US coastal region

CHS synthetic TC suites

HOW DO WE QUANTIFY COASTAL HAZARDS?

Extratropical Cyclones (XCs)

- Hazard analysis is reliant on historical storm events
- Difficult to physically represent XCs using a set of parameters
- Extreme Value Analysis
 - Stochastic Simulation Technique (SST) to assess XC hazards

Tropical Cyclones (TCs)

- Physical characteristics of TCs can be represented by a set of parameters
- Historical record is too limited for accurate hazard estimation
- Create synthetic TCs to overcome limited observations in historical record
 - Joint Probability Method (JPM) to assess TC hazards

QUANTIFICATION OF COASTAL STORM HAZARDS

Why do we need synthetic TCs?

Observation-based methods

- Ex: Extreme Value Analysis (EVA)
- Low spatial resolution & gaps in available measurement data
- Creates a limited sample of storms and their observed responses at a site
- Understate hazards and risk

Examples:

ERDC

- Hurricane Ike 3.7 m surge
 - Before: AEF ~ 1 in 10^7
 - After: AEF ~ 1 in 700
- Hurricane Sandy 3.8 m surge
 - Before: AEF ~ 1 in 10^{13}
 - After: AEF ~ 1 in 625

Joint Probability Method!

JOINT PROBABILITY METHOD WORKFLOW

TC Parameter	Range				
θ	-140°, -100°, -60°, -20°, +20°, +60° (clockwise from North)				
Δp	8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108, 118, 128, 138, 148 hPa				
R _{max}	8 to 143.6 km (from BQ sampling)				
V _t	8 to 40 km/h (from BQ sampling)				
Total # of TCs	300				

General Workflow

- Sample discrete values of TC parameters from historical datasets
- Combinations of discrete values = synthetic TC
 TC = [x₀, Δp, R_{max}, V_t, Θ]
- Develop suite by assigning TCs to idealized tracks
- Assign probabilities to the synthetic TCs
- Simulate TCs in hydrodynamic models
- Compute uncertainty
- Create hazard curves accounting for the storm responses and probabilities

Parameters Defining TCs:

- Δp = central pressure deficit
- V_t = translational speed

 R_{max} = radius of maximum winds Θ = heading

ERD

PROBABILISTIC COASTAL HAZARD ANALYSIS (PCHA)

Goal

- Develop storm suites that fully characterize hazards
 - Probability space synthetic storm events cover range of possible storms
 - Physical space —— covering range of storm responses

Benefits

- Statistical backbone that supports CHS
- Framework is flexible and model agnostic
 - Expansion to other research areas (i.e., compound flooding)
 - \circ Supports regional and local-scale studies
- Metamodeling techniques used for higher resolution results trained on high-fidelity modeling
- Hazards estimates can be easily updated
 - Evaluate multiple/additional climate scenarios

Storm event simulations in **CSTORM**

Hydrodynamic Models in **CSTORM** include:

- WAM: WAve Prediction Model
- STWAVE: STeady-State Spectral WAVE
- ADCIRC: ADvance CIRCulation
- SWAN: Simulating WAves Nearshore

Results output at save points:

- Locations of interest where model results and statistics are desired
- Defined by latitude, longitude, and depth
- Generally include tens of thousands of points per study

CHS-PCHA WORKFLOW ADVANCEMENTS

Metamodeling Applications

Gaussian Process Metamodeling (GPM)

- Mathematical approximation for the input/output (x/z) relationship of a complex numerical model (frequently referenced as process or computer code).
- Formulated based on a database of simulations for complex process. This database is frequently referenced as experiments or support points.

14

UNCERTAINTY QUANTIFICATION

Estimating numerical modeling error:

- Standard approach: estimate a global uncertainty
- PCHA approach: spatially-varying bias and uncertainty
 - o Gaussian Kernel Surface (GKS) approach
- Compute combined bias and uncertainty for SWL hazard estimates
 - Considers relative + absolute values

0.5

0.6

- c = combined uncertainty
- *a* = absolute uncertainty (ADCIRC + PBL)
- *r* = relative uncertainty (ADCIRC + PBL)

CHS-PCHA HAZARD RESULTS

Develop Hazard Curves:

- Apply predicted storm responses and probability masses for the augmented storm suite in JPM integral to create hazard curves
- Annual exceedance frequency estimates
 - o Still water level
 - o Significant wave height
 - o Peak wave period
- Hazard results computed for each storm response at thousands of point locations along coastline

Hazard Curve Information:

- Provided as a function of annual exceedance frequencies (AEFs)
- Meaning: frequency (# of times) per year a given response is equaled or exceeded
- Inverse of AEFs gives the return period
- Uncertainty represented through confidence limits (CLs)

Hydrodynamic I

Modeling

16

CHS – AVAILABLE & ACCESSIBLE DATA

17

- Web-based platform for users to download statistics results describing the hazards and modeling results of the storm events at save point locations
- https://chs.erdc.dren.mil

REGIONAL COASTAL STUDY DATA

18

COASTAL & HYDRAULICS

CHS – STATUS OF NATIONAL COVERAGE

 ${}^{\bullet}$

 ${}^{\bullet}$

ENVIRONMENTAL/ECOLOGICAL APPLICATIONS

- CHS data can be easily leveraged for downstream studies requiring coastal storm response data:
 - Coastal Storm Risk Management (CSRM)
 - Feasibility Studies
 - Engineering with Nature projects
- Available storm suites, modeling results, and statistics serve as initial conditions or boundary conditions for local-scale projects:
 - Deer Island Aquatic Ecosystem Restoration Project
 - Aberdeen Proving Grounds Coastal Resilience and Natural Infrastructure Project
- Support from PCHA framework
 - Storm selection (sub-sampling)
 - Storm sequencing
 - Climate change/sea level rise evaluation
 - Uncertainty quantification

Year	Storm ID	Surge (m)
1	655	0.38
2	1161	0.91
3	1392	0.97
4	1564	0.36
5	1406	0.5
6	1154	3.6
7	48	0.25
8	934	0.22
9	1149	0.55
10	10	2.43

CHS – NODAL HAZARD QUANTIFICATION

CHS-LA 2023

22

U.S.ARM

Nodes

Lonaitude

High Resolution Probabilistic Results:

- Main PCHA result is annual exceedance frequency (AEF) estimates
- Updating hazard results at nodal level as part of inter-agency agreement with FEMA
 - Binary to graduated approach for risk
- Increasing resolution of hazard results by orders of magnitude
 - Nodes (millions of points)
 - Save points (thousands of points)
- Timeline for nodal AEF results:
 - Louisiana December 2022
 - North Atlantic February 2023
 - Coastal Texas August 2023
 - Puerto Rico December 2023
 - o South Atlantic March 2024
 - Gulf of Mexico August 2024
- Higher-resolution results available for expanded set of applications

COASTAL HAZARD ANALYSIS AND RISK TOOLKIT (CHART)

23

- Develop a tool that's <u>modular</u> and <u>transparent</u> with appropriate fidelity for decision at hand
- Support CSRM feasibility studies from Scoping to National Economic Development (NED) determination to Chief's Report
- Leverage USACE (and FEMA) investments:
 - Coastal Hazards System, Coastal Storm
 Damages Prevented, National Structure
 Inventory, Cloud Compute, StormSim,
 Cshore/FILSIM
- Support other benefit/consequence categories
 - Other Social Effects (OSE), Regional Economic Development (RED), and Environmental Quality (EQ)
- Multi-year effort with final tech-transfer planned in FY25

THANK YOU!

Norberto C. Nadal-Caraballo, PhD

Senior Research Engineer Norberto.C.Nadal-Caraballo@usace.army.mil

Madison C. Yawn Research Physical Scientist Madison.C.Yawn@usace.army.mil

