Climatic and Anthropogenic Influences on hypotheic Zone Microbial Communities and Biogeochemical Dynamics for Major Rivers in Texas

Annette S. Engel Department of Earth & Planetary Sciences University of Tennessee

Research objectives – hyporheic zone

- Reveal relationships between HZ invertebrate communities and antecedent river hydrology
 Describe relationships between HZ invertebrate communities
- and geochemical, geologic, and microbial properties, communities, and processes
- 3) Uncover environmental and physical controls on, and drivers of, genetic diversity in stygobionts in HZ
- 4) Assess importance of alluvial systems as corridors for movement and occupancy by stygobionts
- 5) Quantify relationships between HZ properties and biological communities (microbial, stygobiont, and benthic)
- 6) Develop models linking physical properties of the HZ with
 - hydrologic variables across climate gradients

Dr. Benjamin Schwartz Summary

"Microbial World" & microbial metabolisms
Texas rivers and scope of study
Hyporheic zone microbial communities
Microbial signals for habitat and water quality
Using microbial data in models

Microbes are everywhere – 10³⁰ cells

~100 trillion or 10¹⁴ microbial cells (70-90% of all cells)

> ~30 trillion human cells

~10²³ microbial cells in all humans today

1

l'm not dirty... I'm Microbial!

Everywhere...

Major habitats

Deep oceanic subsurface: 10^{29} Deep continental subsurface: 10^{29} Soil: 10^{29} Ocean: 10^{29} Upper oceanic sediment: 10^{28}

Minor habitats

Groundwater: 10^{27} Phyllosphere: 10^{26} Cattle: 10^{24} Termites: 10^{23} Pigs: 10^{23} Humans: 10^{23} Sea surface layer: 10^{23} Atmosphere: 10^{22}

Source: Flemming & Wuertz (2019) Nature Rev. Microbiol. https://doi.org/10.1038/s41579-019-0158-9

Microbes have been around a long time

•Oxygenation of Earth's atmosphere ~2.4–2.0 Ga

- Restructured Earth's surface, water bodies, & distribution of redox-sensitive minerals
- •Played an important role in animal evolution

Microbes need... Carbon + Energy (donor) → Electron acceptor

• Carbon

- Inorganic carbon (CO₂, HCO₃⁻): Carbon from fixing inorganic C to organic C molecules (-<u>auto</u>trophy)
- Organic carbon: obtain energy and carbon from organic compounds (-<u>organo</u>trophy; <u>hetero</u>trophy) – also depends on how get energy (electron acceptors)

• Energy

- Light: pigments to harvest light energy (ATP made at the expense of sunlight) phototrophy
- **Inorganic compounds**: extract energy from chemical transformations (e.g., from *electron* donors to electron acceptors: $H_2S \rightarrow SO_4^{2-}$; $Fe^{2+} \rightarrow Fe^{3+}$) *chemo<u>litho</u>autotrophy*

<u>Electron acceptors</u>

- <u>Aerobe</u>: requires O₂ (for respiration; terminal *electron acceptor use*)
- <u>Anaerobe</u>: does not require O₂ (use alternative electron acceptors to "respire")
- <u>Facultative</u>: O₂ or no O₂ (depends on metabolism, carbon sources)
- Environmental conditions (not only tolerate conditions but require them to grow)
 - **pH**: acidophile, alkalophile, neutrophile
 - Temperature: thermophile, psycrophile
 - Pressure: barophile... etc.

Thermodynamics and microbial metabolism Most energy

Oxic

Respiration (O₂ present)

Anoxic

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_2$ **Dissimilatory Nitrate Reduction** (Denitrification) $NO_3 \rightarrow NO_3 \rightarrow NH_3$ or $NO_3^- \rightarrow NO_2^- \rightarrow N_2O \rightarrow N_2$ **Dissimilatory Iron Reduction** $Fe(OH)_3 + 3H^+ \rightarrow Fe^{2+} + 3H_2O$ **Dissimilatory Sulfate Reduction** $CH_2O + SO_4^{2-} + 2H^+ \rightarrow H_2S + 2CO_2 + 2H_2O_2$ Methanogenesis $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O_2$ Least energy

Image Source: National Geographic

Microbes can...

- <u>Concentrate</u> locally accumulate inorganic minerals (e.g., CaCO₃ deposits, or FeS₂ formation from sulfate reduction)
- <u>Disperse</u> cause solubilization, mobilization, and dispersion (e.g., organic carbon, Fe(III) oxide reduction)

Source: American Academy of Microbiology colloquium, 2000

Produce – use some compounds (CO₂, H₂S) and make new ones (e.g., acids H₂CO₃ or H₂SO₄)

• <u>Fractionate</u> – preferentially use one component in a mixture, which results in elemental and isotopic fractionation

Microbes play a key role in regulating climate

Disturbance - drying

- Flow changes, deviation from perennial flow
- 51% 60% of 64 million km rivers around the world stop flowing periodically or dry during a year
- Drying (and wetting) affects chemistry, biology, hydrogeology

Disturbance - natural vs anthropogenic

- Relating to or involving the impact of humans on the environment
- >58% of land surface under intense human pressure

Source: 2020 World Wildlife Fund Report

Climate change affects Texas rivers

 Working with the U.S. Army Corps of Engineers to understand how native and non-native species are, or will be, responding to climate change and other disturbances
 Focus on hyporheic zones of major rivers

TRIAGE

Engel

Weston Nowlin, PI: "Quantifying drivers of native and nonnative aquatic species abundance and distribution in droughtand flood-prone Texas basins"

Astrid Schwab, PI: "Examining changes to hyporheic exchange flow and nutrient dynamics and their interaction with microbial, algal, and macroinvertebrate communities in response to drying and re-wetting in Texas rivers"

Hyporheic zone

- Recognized over past 70 years, but research challenging
- Ecotone between terrestrial (dry) and aquatic (wet) habitats
- Exchange and mixing of gases and nutrients between surface runoff and groundwater, through gaining or losing conditions
- Important ecosystem services include nutrient turnover, organic carbon transformation, fine particle filtering, aquatic life refugia, reservoir of biodiversity
- A "river's liver"

Fischer et al. (2005). A river's liver–microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 76, 349–371.

Source: WikiCommons

sing a Bou Rouch sampler to collect sediment & invertebrates

ampling the hyporheic zone

Laboratory analyses - geochemistry

Research Staff

Audrey Paterson (Lab Manager) Susan Pfiffner (Research Professor)

Graduate Students

Ethan Sweet (thesis research) Hannah Rigoni (field, lab help)

Undergraduate students Anna Carter

Computational analyses

Laboratory analyses - genetics

Sampling efforts

- Sampled 9 different rivers for total of 110 separate sample sites
- Permeability, hydraulic conductivity (vertical + horizontal) at most sites
- 529 water samples, with 30+ analytes per sample
- 386 microbial samples, with 35+ analytes including DNA sequences and lipid analyses
- 419 HZ invertebrate samples (>50,000 invertebrates for 2021 samples alone)
- 40+ million microbial sequences just from 2021

Microbial data analysis pipeline

Who's there? What are they doing?

Compare river vs HZ communities

Bottom map: GoogleEarth, Landsat

Distinct river & HZ communities

- River groups dominated by phototrophs, bacterioplankton
- HZ microbial groups differ, dominated by chemoorganotrophs, capable of breaking down complex C, as well as S & N cyclers

Controls on communities

San Saba

-1.0

Colorado

HCO₂

-0.5

Pedernales

CH/

- ~40 Million DNA sequences
- Distinct communities based on specific conductance
- River communities controlled by DO (higher levels than HZ)
- HZ communities differ from river communities due to higher concentrations of redox variables (sulfide, CH_a)
- Major shifts in HZ communities and river communities with changing geochemical & lithologic conditions

Canonical Correspondence Analysis

Axis 2 (34.1%, p-value = 0.0001) 1.0 0.5 -0.2 Surface Water DO Samples Axis 1 (57.3%, p-value = 0.0001)

HYPORHEIC ZONE HYDRODYNAMICS, BIOGEOCHEMISTRY, AND MICROBIAL COMMUNITY DISTRIBUTIONS OF THE SAN SABA RIVER, TEXAS

Ethan Sweet, MS thesis University of Tennessee-Knoxville Defended August 2023 (will graduate December 2023)

Research Objectives:

Explore spatial variations in hydrology & geochemistry in HZ

Determine patterns in hydrological & geochemical parameters

Characterize microbial community composition & diversity

San Saba River

- Limited development (<2% of subbasin), minimize potential overprinting of HZ processes by anthropogenic effects (e.g., impervious runoff, urban impacts)
- Impacted by climate change; higher temperatures, more frequent spring flooding events, extreme droughts
- Drought-induced groundwater extraction affects HZ biogeochemical dynamics, impacts native species, spreads invasive species, and causes land subsidence

Diversity of microbial communities

ETHAN SWEET M.S. UTK

From >8M DNA sequences analyzed for Operational Taxonomic Units

- Gammaproteobacteria
- Cyanobacteria
- Alphaproteobacteria
- Bdellovibrionia
- Omnitrophia

- Sample Location
- Actinobacteria
- Bacteria (uncl.)
- Planctomycetes
 Anaerolineae
- Other Taxa

- Bacteroidia
- Verrucomicrobiae
- Dehalococcoidia
- Ca. Acidulodesulfobacter

Hydrodynamic controls on diversity

Source: WikiCommons

- Diversity higher in gaining reaches (groundwater added different microbes into HZ)
- Diversity lower in losing reaches (river diversity is lower and HZ communities like river)

From >8M DNA sequences analyzed for Operational Taxonomic Units and analyzed for Shannon Index

Microbial Indicator Species – river vs HZ

Indicator Species Analysis (ISA) calculated in PAST, showing indicator values (≥ 50; p-values < 0.05)

- Distinct HZ and river microbial communities; correlates to changing hydrological regime (gaining/losing)
- Geochemical indicators reflect gaining/losing conditions; sulfide and CH₄ concentrations higher in gaining reaches
- Use indicator species to model HZ exchange with river communities; monitor changes in hydroregime over time

Evidence of river & faunal health

- Candidatus Nanopelagicaceae
- Burkholderiaceae
- Comamonadaceae
- Unc. Burkholderiales

- Chitinophagaceae
- Oxalobacteraceae
- Pelagibacteraceae
- Moraxellaceae

- Demequinaceae
- Zoogloeaceae
- Microbacteriaceae
- Merismopediaceae
- Gemmataceae

- Microcystaceae
- Pseudomonadaceae
- Anaeromyxobacteraceae

Microcystis

- CH₄ >2.8 nmol/L in 98.3% of samples
- Few waters were totally anoxic (<0.01 mmol/L DO) but most waters were reducing
- Neches River had highest CH₄ levels

Redox conditions – indicate microbial activity

- Higher CH₄ concentrations when DO and sulfide concentrations are lower
- Guadalupe River, high CH₄ corresponds to high dissolved bicarbonate (carbonate bedrock)
- Neches River, high CH₄ corresponds to low dissolved bicarbonate (siliciclastics)

Rivers are sources of CH₄ (and CO₂)

 CH_4 (µmol L⁻¹)

Importance of microbial data for river science

- Microbes cycle carbon and nutrients in rivers (especially in the "river's liver")
- Microbes are food for native and non-native animals, and can create symbiotic associations with native and nonnative animals in rivers
- Microbes can signal critical geochemical, hydrogeological, and biological changes to a system, and can demonstrate how a system is responding to disturbance

Various ways to use microbial data in predictive models

AS Engel

Many models approaches, and growing

June 2023 American Society for Microbiology https://asm.org/Reports/Microbes-in-Models-Integrating-Microbes-into-Earth

Climatic and Anthropogenic Influences on Hypotheic Zone Microbial Communities and Biogeochemical Dynamics for Major Rivers in Texas

Annette S. Engel Department of Earth & Planetary Sciences University of Tennessee

