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Fish Tree of Life

36,681 fish species, including 18,642 freshwater
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Fish Diversity
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Richness of the 863 species with range maps
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Freshwater fish are in trouble
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Spatial Patterns of Threats in USA

Warming Air Temperatures

Temperature change, 1895-2018 PV
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What does the future hold for fishes in streams?




Methods for Developing Predictions

1. Species-discharge relationships
2. Trait-environment relationships
3. Species-environment relationships

4. Assemblage-level space-for-time
substitutions




Species-discharge relationships

Based on species-area
concept

Southeastern USA

Used to forecast alpha
diversity (richness)
declines as a function of
discharge reduction
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Figure from Xenopoulos and Lodge (2006), Ecology m




Species-discharge relationships

 Based on species-area

concept
Lower

Middle . ] river

: *
Used to forecast alpha el

diversity (richness)
declines as a function of
discharge reduction 2=0.83, P<0.01
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However, SDR are scale
dependent and ecological
mechanisms are unstudied

Figure from McGarvey and Ward (2008), Freshwater Biology m




Species-discharge relationships

Our goal was to assess the scale-dependent

community ecology mechanisms associated
with SDR
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Figure from McGlinn et al. (2021), Ecology




Species-discharge relationships
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Figure from Fausch et al. (2002), BioScience




Species-discharge relationships

 The SDR varied by scale
— Strongest at broadest scale

Stream basin scale | e
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Figure from Mangold et al. (In Prep), Ecology m




Species-discharge relationships

 The SAD was the mechanism most closely tied to
SDRs across scales and increased in strength with

scale
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Figure from Mangold et al. (In Prep), Ecology




Species-discharge relationships

* Ecological models representing assemblages or
communities along gradients might be parameterized
to show greater evenness among species where
space/discharge/energy input is greater
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Trait-environment relationships

Functional trait-environment relationships provide
Insight into mechanisms governing species occurrence

Environmental change can then be used to predict trait
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Figure from Leps and de Bello (2023), Journal of Ecology m




Trait-environment relationships

Our goal was to test if environmental changes
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Trait-environment relationships

Consistently responsive traits were life history
(periodic-opportunistic), trophic (partial herbivory), and
habitat (gravel use)
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Trait-environment relationships

The directionality of change was consistent across
drainages
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Trait-environment relationships

« Strategist richness was generally higher within rivers
when flows were undepleted, unregulated, and pollution
was abated

These patterns might be predictive of change for rivers
that experience alterations in the future

Ecological models could be parameterized with threshold
responses to these forms of environmental change

Figure from Santee et al. (In Review), Ecological Indicators AIM




Species-environment relationships

 Indicator species are used
to track ecological shifts

15 20 25 30

Fish are a common
Indicator group
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Blue sucker is widely
considered an indicator
species for large rivers

| I I
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Year

Figure from Siddig et al. (2016), Ecological Indicators m




Species-environment relationships

Our goal was to assess relationships between Blue Sucker
occurrence and gradients in stream fragmentation and flow

regulation
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Figure from Evans et al. (2023), River Research and Applications AIM




Species-environment relationships

o

Flaw regulation
{upstream degree of regulation, %) —
1 P ‘]

* Blue Sucker was absent
where river regulation and
fragmentation were combined

A
=
=

Regulated, .
fragmented : Large regulated rivers

S

=
(=]

Models predicting Blue

1000 1500

Cx

Sucker response to changes | Connecivy(fagment engn i
in river regulation and |
fragmentation could be
parameterized with the
thresholds identified in this
study

'
Remnants | Intact merscapes
L]

Flow regulation
{upstream degree of regulation, %)

®x
0 .

0 S00 1000 1500
Cannectivity (fragment length, rkm)

Figure from Evans et al. (2023), River Research and Applications AlM




Space-for-time substitutions

« Space-for-time substitutions are useful for developing
predictions for the future

« A central assumption to this framework is that the
processes that contribute to change through space are
the same that contribute to change through time

These assumptions are
reasonably met for aquatic
systems affected by land
cover land use change or
along aridity gradients
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Figure from Wogan and Wang (2018), Ecography




Space-for-time substitutions

Our goal was to assess how space-for-time substitutions
along an aridity gradient approximated fish assemblage
change under climate scenarios
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Space-for-time substitutions
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Space-for-time substitutions
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Space-for-time substitutions

« Climate change projections (warmer, drier) showed fish
assemblages “sliding” down an existing aridity gradient

« The direction of change was towards non-native and
broadly distributed species but away from regionally
endemic species

Ecological models predicting the expansion of non-
native species might include aridity covariates
— Opportunity to make use of new data products (e.g., OpenET)
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What is the future for freshwater fishes?

Scale dependent and linked to
species abundance
distributions

Traits that response similarly
across alterations can be used
iIn monitoring and predicting

Indicator species can provide
ecologically relevant thresholds
for environmental change

Existing spatial gradients
provide insight into future
conditions Ai HME




Broader implications

« USACE R&D Priorities
— Mitigate and adapt to climate change
— Ensure environmental sustainability and resilience
— Revolutionize and accelerate decision making

* Models provide early detection of ecological

process for all these priorities:

— SDR model predicts fish dominance under water loss scenarios

— TER model provides ecological indicators for decision making

— SER model provides “actual numbers” to be used in management

— STS model predicts expansion of non-native fish with climate change

i
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Thank you for your attention!

Contact: Jperkin@tamu.edu

or if you’re not into the whole brevity thing...

Joshuah.perkin@agnet.tamu.edu
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