# **Refining Quagga Habitat Suitability Models**

Amy H. Yarnall, Carra C. Carrillo, Safra Altman, Emily Russ, Jacque A. Keele, Sherri F. Pucherelli, Yale J. Passamaneck, Aaron C. Murphy, and Todd M. Swannack

Final Report No. ST-2021-19134-01

EcoLab-F008A-2021-1

Manuscript submitted to Aquatic Invasions



## USBR – ERDC collaboration

- Collaboration began in FY 2014
   This project began in FY 2021
- Collaboration with ERDC Integrated Ecological Modeling Team & USBR Ecological Research Lab
- Combined field-based expertise and ecological modeling to develop quantitative toolkit to (1) forecast potential dispersal of invasive mussels and (2) quantify if water levels are correlated with established populations

#### USBR

Jacque Keele, Sherri Pucherelli, Yale Passamaneck, Aaron Murphy

#### ERDC

Todd Swannack, Safra Altman, Carra Carrillo, Emily Russ, Amy Yarnall









## Dreissenid mussels

- Highly invasive aquatic species
- Introduced in 1986 (zebra) and 1989 (quagga)
- \$1 billion in damage annually
- Big questions:
  - Where will they go next?
  - What drives successful colonization?
  - What are the water quality parameters that link to habitat suitability? (Work in collaboration with SRP)
  - How does water management relate to population status? (This project)

### Study system



- Established = 6
  Not shown Suspect = 12
  - Negative = 24

|   | Parameter                                              | Dreissenid Infestation<br>Thresholds                             |
|---|--------------------------------------------------------|------------------------------------------------------------------|
|   | Salinity                                               | <5 ppt                                                           |
|   | Calcium                                                | >25 mg/L <sup>1</sup>                                            |
|   | рН                                                     | 7.4-9.5                                                          |
|   | Substrates                                             | Prefer hard substrates but<br>may be found on soft<br>substrates |
|   | Depth in lake                                          | Surface to >120 m;<br>Prefer depths <30 m                        |
|   | Temperature-range for<br>survival                      | 5-30°C1                                                          |
| • | Temperature- optimal<br>for reproduction and<br>growth | 16°C                                                             |
|   | Temperature-minimum for reproduction                   | 9° C1                                                            |
|   | Lethal Temperature                                     | 32-35°C                                                          |
|   | DO- minimum required<br>for survival                   | >2 mg/L1                                                         |

United Water Conservation District, 2017

### Western U.S. susceptible waterbodies

- Most Western US reservoirs have favorable conditions for quagga colonization
- Western US reservoirs are hydrologically different from well studied invaded waterbodies
- Hydrology characteristics have been less extensively studied

### Drawdown event definition

Criteria for event start:

- The water level decreases by ≥0.2 ft from the day prior (Day 0) <u>and</u>
- remains at or below that threshold for ≥5 consecutive days.

Criterion for event end:

1. Triggered on Day 5 or beyond if the water level is within 0.2 ft of or surpasses the level of 5 days prior.



## Drawdown properties examined

| Annual frequency          | Mean interval  | Mean duration (d)            | Percent of year in |
|---------------------------|----------------|------------------------------|--------------------|
| (no. y⁻¹)                 | duration (d)   |                              | drawdown (%)       |
| Mode season of occurrence | Mean elevation | Mean rate of elevation       | Mean elevation     |
|                           | change (ft)    | change (ft d <sup>-1</sup> ) | percent change (%) |



Duration

Seasonality

Magnitude



## Drawdown properties examined

| Annual frequency<br>(no. y <sup>-1</sup> ) | Mean interval<br>duration (d) | Mean duration (d)            |                    |
|--------------------------------------------|-------------------------------|------------------------------|--------------------|
| Mode season of occurrence                  | Mean elevation                | Mean rate of elevation       | Mean elevation     |
|                                            | change (ft)                   | change (ft d <sup>-1</sup> ) | percent change (%) |



Duration

Seasonality

Magnitude



Rate

Annual frequency (no. y<sup>-1</sup>)



#### Mode season of occurrence

25 -Most common season of drawdown Spring 20-Summer Fall No. reservoirs Winter 15-10-5. 0. Established Negative Suspect Mussel population status

Mode seasonality does not differ among statuses

Mean duration (d)









Mean elevation change (ft)



Suspect and negative reservoirs experience 5x larger drawdowns than established









Drawdown properties with promise\* for quagga invasion prevention

> Mean elevation change (ft)

Mean duration (d)

\* Status comparisons are not statistically significant

#### Magnitude

- Suspect & Negative 5x greater water level decline vs. Established □ Larger drawdowns (≥7 ft) mean more benthos and proportion mussel population exposure

  - Established reservoirs have small-magnitude drawdowns
    - Mussel populations exist entirely below the level of water level decline

Duration

- □ Suspect 4x longer drawdowns vs. Established
  - □ Longer exposure periods (≥40 d) can negatively impact quagga mussel settlers and adults
  - Established reservoirs have shorter duration drawdowns
    - □ Sub-lethal exposure period

Established reservoirs have frequent, short-duration, small-magnitude drawdowns

These reservoir storage dynamics more closely resemble natural lakes, to which quaggas are well adapted



Aquatic

Drawdown magnitude and duration patterns observed in suspect reservoirs may inform invasion prevention strategies.

This work can help refine the boater behavior model to provide more accurate predictions of mussel colonization

|                                                                                                                                                                                                                                                                             | Journal of Environmental Management 332 (2023) 117383                                                                                                                                                                                                                                |                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| ELSEVIER                                                                                                                                                                                                                                                                    | Contents lists available at ScienceDirect Journal of Environmental Management journal homepage: www.elsevier.com/locate/jervman                                                                                                                                                      | A Backsonnellar |  |  |
| Research article<br>Patterns of dreissenid mussel invasions in western US lakes within an<br>integrated gravity model framework                                                                                                                                             |                                                                                                                                                                                                                                                                                      |                 |  |  |
| Carra C. Carrillo <sup>a,*</sup> , Bianca R. Charbonneau <sup>b</sup> , Safra Altman <sup>a</sup> , Jacque A. Keele <sup>c</sup> ,<br>Sherri F. Pucherelli <sup>c</sup> , Yale J. Passamaneck <sup>c</sup> , Aaron C. Murphy <sup>c</sup> , Todd M. Swannack <sup>a,d</sup> |                                                                                                                                                                                                                                                                                      |                 |  |  |
| <sup>b</sup> US Department of Defense A<br><sup>c</sup> Bureau of Reclamation, Tech<br><sup>d</sup> Department of Biology, Texa                                                                                                                                             | my Engineer Research and Development Center, Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA<br>nical Garvice Center, Hydraulis: Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA<br>3 State University, San Marcos, TX, USA |                 |  |  |

Manuscript submitted to Aquatic Invasions



Drawdown properties could be incorporated into further water quality analysis work underway in collaboration with the Salt River Project.



## Questions?

